Aid by Sector

Default filter shows currently active Programmes. To see Programmes at other stages, use the status filters.
Results
1 - 20 of 101

REPP - Renewable Energy Performance Platform

UK - Foreign, Commonwealth Development Office (FCDO)

The Renewable Energy Performance Platform (REPP) is a private finance investment vehicle which mobilises private sector development activity and investment into small- to medium-scale renewable energy projects across sub-Saharan Africa. This is through providing technical assistance, development capital and ‘viability gap’ financing, giving communities access to clean energy supplies and avoiding greenhouse gas emissions. REPP was initially set up by the Department for Business, Energy & Industrial Strategy (BEIS) in 2015 but was transferred to the FCDO in 2022. REPP consequently has a separate DevTracker account under BEIS which can be found here - https://devtracker.fcdo.gov.uk/programme/GB-GOV-13-ICF-0013-REPP/summary.

Programme Id GB-GOV-1-301517
Start date 2022-6-29
Status Implementation
Total budget £10,280,000

Increasing renewable energy and energy efficiency in the Eastern Caribbean

UK - Foreign, Commonwealth Development Office (FCDO)

To increase the use of renewable energy and energy efficiency measures and to improve energy security in the Eastern Caribbean

Programme Id GB-1-205061
Start date 2015-6-5
Status Implementation
Total budget £29,404,500

Climate Smart Development for Nepal

UK - Foreign, Commonwealth Development Office (FCDO)

This will help Nepal to cope with impacts of climate change (CC) and promote clean development. It will provide strategic support to the Govt of Nepal to design and implement CC policies, to integrate resilience throughout government planning. This will:Improve resilience of 700,000 poor & vulnerable people (especially women) to floods, landslides, droughts in most remote districts;Improve resilience of businesses in 5 growing urban centres & 3 river basins through investments in urban planning, large scale irrigation systems & flood management;Facilitate connection of over 25,000 households to new micro-hydro power installations; connect over 70,000 homes to solar power & install RET in more than 200 schools/health clinics;Develop industry standard for ‘clean’ brick production and enable over half of the brick kilns (at least 400) to adopt more efficient technologies;Improve design of future CC programming & beyond through generation of world class evidence

Programme Id GB-1-204984
Start date 2016-10-6
Status Implementation
Total budget £48,400,879

Pacific Clean Energy Programme

UK - Foreign, Commonwealth Development Office (FCDO)

The Pacific Clean Energy Programme (PCEP) will support increased investment in renewable energy, and aims to improve access to electricity, increase the proportion of electricity from renewable sources, and reduce greenhouse gas emission.

Programme Id GB-GOV-1-400021
Start date 2023-5-17
Status Implementation
Total budget £20,046,569

Climate Public Private Partnership Programme (CP3)

UK - Department for Energy Security and Net Zero

The Climate Public Private Partnership Programme (CP3) aims to increase low carbon investment in renewable energy, water, energy efficiency and forestry in developing countries. By showing that Low Carbon and Climate Resilient investments can deliver competitive financial returns as well as climate and development impact, CP3 seeks to catalyse new sources of climate finance from institutional investors such as pension funds and sovereign wealth funds.

Programme Id GB-GOV-13-ICF-0010-CP3
Start date 2012-1-1
Status Implementation
Total budget £50,217,370

Accelerate to Demonstrate (A2D)

UK - Department for Energy Security and Net Zero

The A2D programme contributes to the UK’s £1bn Ayrton Fund commitment to accelerate clean energy innovation in developing countries. A2D will focus on developing innovative technology-based solutions particularly through transformational “lighthouse” pilot demonstration projects in four thematic areas: critical minerals, clean hydrogen, industrial decarbonisation and smart energy.

Programme Id GB-GOV-25-ICF-0048-A2D
Start date 2023-1-1
Status Implementation
Total budget £65,500,000

Climate Investment Funds (CIFs)

UK - Department for Energy Security and Net Zero

The $8 billion Climate Investment Funds (CIF) accelerates climate action by empowering transformations in clean technology, energy access, climate resilience, and sustainable forests in developing and middle income countries. The CIF’s large-scale, low-cost, long-term financing lowers the risk and cost of climate financing. It tests new business models, builds track records in unproven markets, and boosts investor confidence to unlock additional sources of finance.

Programme Id GB-GOV-13-ICF-0004-CIF
Start date 2009-5-1
Status Implementation
Total budget £1,567,066,250

Global Energy Transfer Feed-in Tariff (GETFiT)

UK - Department for Energy Security and Net Zero

The Global Energy Transfer for Feed-in Tariff (GET FiT) Programme was established in 2013 with the main objective of assisting Uganda to pursue a climate resilient low-carbon development path by facilitating private sector investments in renewable electricity generation projects. The support provided was expected to improve access to electricity and promote growth and economic development in Uganda and contribute to climate change mitigation.

Programme Id GB-GOV-13-ICF-0009-GETFiT
Start date 2013-3-1
Status Implementation
Total budget £25,800,000

Clean Energy Innovation Facility (CEIF)

UK - Department for Energy Security and Net Zero

ODA grant funding that supports clean energy research, development & demonstration (RD&D) to help improve the performance of innovative technologies, and to accelerate the clean energy transition to avoid the most severe impacts of climate change in developing countries

Programme Id GB-GOV-13-ICF-0037-CEIF
Start date 2019-4-1
Status Implementation
Total budget £44,317,077

Rice Straw Biogas Hub

DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY

Rice is the number 1 food crop globally: 91% of it is produced and consumed in Asia and it is the staple for more than half the world's population. However, for every kilogram of rice we eat, a kilo of straw is also produced. Not to be confused with husks, which cover the grains and are taken to a mill, the stems and leaves of the rice plant are left in the fields after harvest. Rice straw is difficult to remove from paddy fields, which are often flooded and in remote areas. It is high in silica, making it a poor fuel or animal feed. It is also not suitable to incorporate into flooded rice fields due to slow degradation and high greenhouse gas emissions, so burning is farmers' main option for clearing fields. Across Asia, a staggering 300 million tonnes of rice straw go up in smoke every year, releasing a lethal cocktail of gases and black carbon that triple risks of increased respiratory diseases and accelerate climate change. Rice is responsible for 48% of global crop emissions: more CO2e than the whole global aviation industry combined. A recent IFPRI study calculated the health costs of crop residue burning to be $30 billion annually in North India alone, rising to $190 billion in five years. To address this crisis a British SME, Straw Innovations Ltd, was started in 2016 as a spin-out from pioneering international research on the subject. The company's founder, Craig Jamieson, assembled consortia and secured Energy Catalyst co-funding to establish an industrial pilot plant in the Philippines, collecting rice straw and fermenting it to produce clean-burning methane gas. The whole system had to be specially designed since no existing technologies were suitable for the purpose. The plant is now operational, with many techno-economic breakthroughs. Local farmers strongly support it and are waiting for scale-up so they can benefit from its efficient, clean energy services. Rice is known as a "Poverty Crop" because farmers often struggle to afford energy-intensive equipment that could improve their yields add value to their crop. Therefore, this project will demonstrate a complete system of 500ha harvesting, straw removal, biogas-powered rice drying and storage plus efficient milling. The "Rice Straw Biogas Hub" will offer these as affordable, value-adding commercial services to the rice farmers, avoiding their need to buy and maintain expensive equipment, and enabling them to triple incomes whilst protecting the environment.

Programme Id GB-GOV-26-ISPF-IUK-2BC54TT-VALJQAG-QX8WCC7
Start date 2022-9-1
Status Implementation
Total budget £1,540,910.86

PyroPower Africa Stage 2

DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY

PyroPower is a containerised 100 kW waste to energy technology developed by PyroGenesys and ICMEA-UK in Energy Catalyst Round 6 (ECR6). The conversion of agricultural waste to renewable electricity, process heat and biofuels simultaneously, underpins PyroPower's novel multi-revenue ability to provide reliable, affordable, renewable electricity in off-grid communities. Project partner Mobinet will facilitate access to formal banking services, microfinance and credit using their SIMPAY mobile banking platform. Proactive engagement and facilitation of women farmers and women-owned and run businesses, and wider engagement with disadvantaged groups to ensure they are included and their specific priorities and needs are being met, will be prioritised by all partners. ATMANCorp owns a 700 hectare cassava farm and flour mill in Oyo State and will host the PyroPower pilot along with a Micro Enterprise Park (MEP) and guarantee the supply of agricultural waste. The pilot will provide biofuel to a 250kva genset used to generate power for the factory and MEP and supply culinary-grade steam used for sterilising food processing lines in the factory. Aston University will build on their biofuel work with PyroGenesys in ECR7, to develop a continuous liquid biofuels process for producing diesel and kerosene. Manufacturing methods required to scale up the process for commercial production, will be developed by ICMEA-UK. Introduction of these liquid biofuels to the Nigerian market, in the form of renewable alternatives to diesel and kerosene, will be managed by Ardova PLC, a major Nigerian hydrocarbon reseller that supplies petroleum products to around 500 filling stations across the country. Within 5 years of project start, lessons from the pilot will inform the rollout of 100 commercial PyroPower installations across Ardova's filling station network. Deploying Mobinet's SIMPAY payment platform will support cashless electricity purchases made using featureless mobile handsets with no internet access in communities selected by Ardova to host commercial PyoPower installations. The export of solid biofuels in the form of solid smokeless biochar briquettes as a renewable alternative to coal, will be managed by PyroGenesys ECR7 partner Coal Products Limited (CPL).

Programme Id GB-GOV-26-ISPF-IUK-2BC54TT-VALJQAG-5FG7A87
Start date 2022-9-1
Status Implementation
Total budget £2,159,297.27

ECOSMART:2

DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY

ECOSMART:2 will demonstrate the smart integration of a novel, enhanced anaerobic digestion (AD) process with solar technology to form the basis of a circular economy model, providing affordable, clean, secure energy access. Through development and operation of the ECOSMART:2 modules, new integrated UK-Nigerian enterprises and supply chains will be established, aligning social and gender considerations with economic and environmental benefits. With a focus on valorising agri/food waste streams (e.g. cassava and water hyacinth), ECOSMART:2 will ensure a high proportion of beneficiaries are women and those on low incomes. ECOSMART:2 will build on the consortium's expertise, utilising locally available materials and low-cost components to ensure affordability, and reducing feedstock retention time through system design to to accelerate the AD process. It will also produce soil amenders and fertiliser to replace expensive, synthetic fertilisers, thus supporting local, sustainable agricultural practices. With a 4.5-year payback, this model of affordable, low carbon, secure bioenergy will tap into Nigeria's £7.45Bn microgrid market to support enterprise and capacity building opportunities with operator training and local manufacture as well as up-skilling both upstream and downstream enterprises/supply chains for the provision of feedstock and the sale of energy and fertiliser. AD and control systems will be adapted by UK SMEs for global commercial opportunities. With a focus on flexible energy use and affordability, advances in demand-side management and microgrid technology, ECOSMART:2 presents developing countries with an opportunity to leapfrog expensive, centralised infrastructure.

Programme Id GB-GOV-26-ISPF-IUK-2BC54TT-VALJQAG-HHLB2B4
Start date 2022-9-1
Status Implementation
Total budget £808,376.39

Rice-straw powered biowaste to energy

DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY

This consortium, let by Carnot Ltd, seeks to develop the world's first profitable rice-straw bioenergy demonstrator for a rural community in Lombok Island, Indonesia. Rice straw is separated from the grains during harvesting and either combusted (producing CO2) or left to decompose (producing methane with 25\* Global Warming Potential) due to challenges with harvesting it, particularly in flooded paddy fields (a common occurrence). Straw Innovations has created innovative technology that overcomes the barriers to harvesting it in all weathers, unlocking a potential 300Mt of rice straw generated in Asia every year. Rice straw has high ash content (around 20%), comprising about 75% silica. This, combined with other components in the straw (chlorine, potassium) causes melting and slagging / fouling in boilers when combusted. Hence, it is not an easy fuel to chop or combust. PyroGenesys have developed a lower-temperature pyrolysis process which can convert rice straw into Biochar, a carbon-sequestering fertiliser that can be used by the rice farmers, and biofuel. The carbon sequestered can be traded on carbon removal markets. Surplus biofuel not used to generate electricity can be sold. Electricity is a low-value commodity and renewable electricity projects will typically require very large scale to be profitable and attract funding required from investors. PyroGenesys' process solves this problem by opening up two very high-value revenue streams. Carnot is developing ceramic engine gensets with double the efficiency of state-of-the-art diesel gensets, capable of operating on all fuels. These will provide electricity to the rice mills as their base load as well as electricity to a rural community. Integrating Carnot's gensets enables revenues generated by biofuel sales to be maximised. Indonesia: * Is the world's 5th largest GHG emitter. * Is the largest producer of biofuels worldwide. * Has mandated to convert a significant portion of its palm oil into FAME biodiesel. There is a reluctance to move to renewable energy due to fossil fuel sunk costs/subsidies and no proven profitable off-grid low-carbon energy business model. This demonstrator project aims to be the catalyst to breaking the deadlock and unleashing investment into Indonesia's enormous renewable energy potential. Key project outputs: * Pilot-scale demonstration of business model feasibility * 200,000kg rice-straw feedstock; * 76,000kg value-added-biochar/53,200kg carbon sequestration/80,000kg biofuel; * 2.28MWh electricity provided to rice mill.

Programme Id GB-GOV-26-ISPF-IUK-2BC54TT-4PCSDLJ-YEKAKXV
Start date 2023-3-1
Status Implementation
Total budget £846,396

Technical and Societal Innovation for Delivering Access to Community Wide Affordable Cylindered CBG for Cooking and Sustainable Fertiliser

DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY

Natural Synergies Ltd (NS) Industrial Research project "Technical/Societal Innovation for Delivering Community Wide Affordable Cylindered CBG for Cooking and Sustainable Fertiliser" is to establish new data and knowledge, which would eventually lead to establishing an demonstration waste to energy process based around an advanced anaerobic digestion treatment process that has been developed by NS. This seminal development work will utilise a sectoral system of innovation which will eventually lead to nationwide joint partnerships, between NS the (technology provider) and poorer sectors of the local community. NS together with project partners, are involved in a project that concerns advanced pre-treatment and processing of faecal sludge and organic waste, providing enhanced, efficient energy security/generation, utilising locally available resource and GHG emission savings. NS aims in this Industrial Research project, to develop a stand-alone enhanced energy pre-processing technology, for rural and peri-urban locations in developing countries, increasing the efficiency of energy generation for the supply of affordable clean energy, for cooking and transport to the poor and marginalised local community and also with the production and supply of a sustainable source of fertiliser to local farmers. The decentralised and localised waste to energy plant, will also serve as a low cost faecal sludge management system and organic waste treatment facility, preventing the dumping of waste into waterways and land, providing benefits to both the environment and health to the local community. During the course of the project, the team will work in close co-operation with existing co-operatives and where necessary, expand and create further entrepreneurial partnerships, encouraging women's empowerment, social inclusion and security in the overall waste supply chain and product sales and marketing. This will lead to establishing a circular economy for waste treatment with close co-operation between the energy plant operator and the local community. Although specialised components will be sourced in the UK, NS will establish non-specialised component manufacture/build using local industries leading to job creation in DC, economies in plant build, short inbound/outbound feedstock and product supply logistics, marketing, sales and service supply chain.

Programme Id GB-GOV-26-ISPF-IUK-2BC54TT-4PCSDLJ-MWM5TMK
Start date 2023-3-1
Status Implementation
Total budget £884,014.06

BioGas MicroGrid in a box (BGMG)

DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY

BGMG (Bio Gas Micro Grid in a box) will develop a hybrid renewable energy hub for deployment in off grid communities. It combines solar, wind and biogas energy resources in one drop-in containerised unit with electrical energy stored and deployed from batteries and waste heat recovered for local utilisation. The project expands the work of the partners in the recent highly successful Energy Catalyst WEGEN project that resulted in development and subsequent commercial sales of a novel 6kW plug-and-play biogas generator technology. The partners include WEGEN collaborators CAGE Technologies Ltd (CTL)/OakTec (power system technology developer), Sistema Bio (biogas system OEM and system trial and demonstration) and Sutton Power Engineering ( generator OEM and supplier of solar hardware). The partners will develop an intelligent energy management platform to integrate, manage and distribute the bio/solar/wind energy inputs based on a development of the existing CTL/OakTec intelligent control platform. Additional outputs will be an application of the WEGEN biogas engine technology to a new modular liquid cooled engine family that will allow a range of power outputs to suit application requirements delivering world leading fuel efficiency and low emissions. The liquid cooled engines will employ CHP technology to capture waste heat for distribution. CTL and Sutton have considerable experience of hybrid power systems having deployed LPG-solar-battery systems for site welfare with the HS2 rail project at Euston, London and more recently hydrogen-solar-battery hybrid to power the cruise ship terminal in Orkney. BGMG will support the development of carbon neutral microgrids in sub-saharan Africa and India and a trial system will be deployed to Kenya and be tested in a high profile location. Applications include stand-alone power for large food and agricultural businesses, villages, schools, hospitals and health-centres and public buildings. Bio-waste from the immediate location including food can be used in the feedstock. As global energy prices rise the business case for BGMG becomes stronger. Whilst the system will be more costly than a simpler generator or solar array it can be funded to the customer on a 'machinery as a service' basis by Sistema's established easy payment business model and will enjoy minimal fuel and running costs over its lifetime giving it a much lower lifetime cost than conventional fossil based power systems. Immediate commercial opportunities include powering larger farms, food production businesses including rice mills where rice straw is used as part of the AD feedstock, agricultural processing and charging EV's.

Programme Id GB-GOV-26-ISPF-IUK-2BC54TT-4PCSDLJ-7THGJBQ
Start date 2023-3-1
Status Implementation
Total budget £682,468.81

Hybrid energy system for clean cooking and electricity generation

DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY

This aim of this UK-Nigeria-Ghana mid-stage collaborative project is to optimise the concentrated-solar-power (CSP) and thermoelectric generator (TEG) hybrid energy system we developed in previous project, testing and demonstrating them in relevant user environment. The system has clear benefits of providing both clean energy for cooking and off-grid electricity, addressing the energy access issue in the targeted countries. The project will allow the UK consortium (Thermoelectric Conversion Systems, Cranfield University and University of Derby) to collaborate with a Nigerian company (IBEDA) and a Ghanian company (Conlons Kitchen) to optimise the design of the energy system, build demonstrators locally in Nigeria, field test its performance in rural communities of Nigeria and Ghana, conduct market research, and develop relevant GEIS and business models. The system will have an additional international market in other sub-Saharan and South Asian countries. This project will enable the consortium to progress into further TRL development and commercialisation post-project. Successful outcomes will bring competitive energy products to a significant and growing market.

Programme Id GB-GOV-26-ISPF-IUK-2BC54TT-4PCSDLJ-7KMBART
Start date 2023-3-1
Status Implementation
Total budget £578,245.33

Halophyte-based Energy & Agro-ecological Transitioning (HEAT)

DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY

The Halophyte-based Energy & Agro-ecological Transitioning (HEAT) Project seeks to commercialise halophytic agro-ecological approaches and bio-energy technologies in Sub-Saharan Africa by introducing saltwater-irrigated biomass production in degraded soils for localised transitions to clean energy and land regeneration. Targeting both bio-energy production and carbon sequestration, the project will test a combined integrated production and processing model in tandem with a service-based business model with existing partners and investors with the aims of operationalising/commercialising the results by the end of the project timeline. The project will be undertaken in Ghana and Namibia with a range of partners from the UK, EU, and African registered entities with a track record of working together in various global geographies. With a strong focus on socio-economic development for rural communities, gender inclusivity, and safe access to clean energy, HEAT expects to exploit the results of the 24-month project for the long-term benefit of communities and existing consortia in the three focus regions of West Africa, South-West Africa, and South Asia.

Programme Id GB-GOV-26-ISPF-IUK-2BC54TT-4PCSDLJ-9RAFK4Z
Start date 2023-3-1
Status Implementation
Total budget £646,738.58

Pay-N-Pump 2 - storage integration for home and institutional energy access, and improved irrigation impact

DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY

PAY-N-PUMP is an innovative smart digital pay-as-you-go water-pumping and irrigation solution for small scale farmers in Uganda, built in a push-cart format, developed by Aptech Africa Ltd in an Energy Catalyst 7 project, in partnership with SVRG. Despite COVID-delays, more than 65 systems have been piloted, and farmers have observed crop-yields and household-income increase by as much as 200%. The 3 pieces of consistent feedback from customers are: 1. hours of irrigation do not match farm demand (optimum timing is dawn and dusk, when solar power is weak) 2. inability to use the system for household or institutional (eg schools, clinic, church) energy access, eg for lighting, phone charging or other new micro-entrepreneurial businesses 3. system is out of the price range of many farmers In this project, partners Aptech Africa and SVRG, will seek to modify the Pay-N-Pump technology to include modern, reliable Li-Ion battery storage to both enhance irrigation performance to better match market-demand, and simultaneously to make the system dual-use, so that it can both provide farm irrigation and also household or institutional energy access. This is a considerable technical challenge, but also a consumer challenge to find a design that can optimise system performance and impact in both use-case scenarios. But success in this project would see the creation of a unique, transformative technology. At the moment, users need two separate systems for household and irrigation services. This is not only expensive, but household systems are typically small and unreliable, and hard to scale as household energy-usage increases. There is no product currently on the market that combines the two use-cases as we propose, in a PAYG business model, and which is mobile for ultimate flexibility and ability to serve different needs, and therefore that is able to create such a wide range of impacts. Our modelling suggests that the storage-enhanced dual-use PAY-N-PUMP could increase farm yields by 250%, and provide irrigation and household energy at 70% of the cost of using two separate systems. We estimate that the two-in-one nature of this solution will at least double our market size, and consequently not only significantly increase agricultural productivity in Uganda, but also provide a novel and attractive solution for energy access in rural communities, since it transforms energy-access from a cost to a profit-making opportunity. This project simultaneously addresses SDG-7(Clean and affordable energy), SDG-1 (No Poverty), SDG-2 (Zero Hunger), SDG-6 (Clean Water and Sanitation), and SDG-13 (Climate Action).

Programme Id GB-GOV-26-ISPF-IUK-2BC54TT-4PCSDLJ-4P9MAUY
Start date 2023-3-1
Status Implementation
Total budget £257,522.81

SPITFIRE: Self-Powered Biomass Stove For Remote Communities

DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY

Globally, 3 billion people have no access to clean cooking, relying instead on dirty-burning charcoal as primary cooking and water heating fuel. The release of CO and PM (linked to \>4M deaths/year) led the WHO to declare pollution caused by unclean cooking as "the world's largest single environmental health risk". As its alternative, the use of firewood substantially influences deforestation, due to unregulated foraging for firewood, while negatively impacting wildlife. Quality of life in Sub-Saharan Africa is also severely impacted by lack of (domestic and institutional) access to electricity. According to the WDI, 72% of Zambia's population has no access to electricity. The SPITFIRE-stove will address both the major unmet need for clean cooking solutions and the lack of access to electricity. This will be achieved by developing an affordable, low-emission, biomass-pellet-burning clean-cookstove that generates a no-added-fuel electricity surplus. The institutional SPITFIRE-stove will use temperature-controlled airflow regulation to ensure complete combustion to eliminate \>80% of CO and particulate-matter emissions compared to traditional combustion. Airflow regulation will be via an electric fan, powered by a thermoelectric generator (TEG), which will both power the electric fan and provide an electricity surplus for storage in a low-voltage battery with charge-out ports for charging/powering small electronic devices. Furthermore, cooling of the TEG by an integrated water-cooling system will deliver a free supply of heated water. SPITFIRE will develop: -Novel high-temperature thermoelectric materials and production processes for the TEGs, -15kW burner technology that allows intelligent, temperature-controlled airflow regulation; -Institutional-scale, sustainable biomass-pellet-burning stove. Integration of the scaled-up stove and burner design with the novel high-temperature TEG module via hot- and cold-side heat receptors/exchangers will require close collaboration between the partners and multiple iterations of system level modelling and simulation. The SPITFIRE project ultimately aims to deliver a final stove design, assemble 30 demonstrator products, and validate stove performance in field trials within institutional kitchens in public services and local enterprises such as restaurants, schools, and orphanages, in our primary target market, Zambia. The SPITFIRE-stove will therefore address the clean cooking and energy dilemma by; -Delivering clean, sustainable biomass-burning cooking stoves with low emissions, -Delivering cooking stoves that will utilise reduced-cost biomass pellet fuels that are approximately one-third of the price of LPG and half of the price of charcoal, Ensuring reliability of energy supply for Zambia and beyond by utilising locally-sourced sustainable forestry for the biomass pellets.

Programme Id GB-GOV-26-ISPF-IUK-2BC54TT-4PCSDLJ-RHEKMRW
Start date 2023-3-1
Status Implementation
Total budget £698,680.01

Smart Biogas 3: Digesting Data

DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY

Smart Biogas (tm) is a patent pending, remote monitoring platform designed to monitor increasing numbers of geographically dispersed household/institutional biogas digesters at minimal cost across the world. Smart Biogas collects data on individual biogas digesters' performance and usage, allowing detection of potential faults or substandard installation/operation. This data is transmitted to a cloud platform where the data is, through this project, automatically processed and made intelligible to the user for, example through notifications, to facilitate prompt repairs or further user training. Hardware and software was designed and successfully piloted with Energy Catalyst Round 7 funding (No.105909) (EC7) . Over the course of EC7, we released a MVP (Minimum Viable Product/first release) of the metering hardware and web-application, and recorded over 55 million hourly reports on biogas performance from around the world and published two academic papers. This MVP product allowed the metering to happen and display the information in a web-application but, valuable and unique as that product already is, at this stage it does not add any additional intelligence to the data. This grant would allow us to develop a number of other features for commercial release including: * Enhanced analytics for preventive maintenance and diagnostics for biogas plants * Finalise Carbon Credit reporting * Enhanced sensing hardware to provide further data points * Robustness development of the existing product and for wider use cases including larger commercial digesters * Further academic papers and knowledge dissemination Ultimately we seek to address financial barriers and operational inefficiencies enabling viable biogas-as-a-service commercial models, enhancing company operations and providing additional income streams. Smart Biogas provides a powerful tool that facilitates increased access to biogas technology for more people, especially the rural poor. The project is led by Inclusive Energy Ltd, with support from prominent actors in the biogas sector in East Africa, Kenya Biogas Program and Biogas Solutions Uganda, academic input from the University of Nottingham, and larger scale commercial pilots with Green Impact Technologies (Malawi) and Grassroots Energy (India).

Programme Id GB-GOV-26-ISPF-IUK-2BC54TT-4PCSDLJ-DECUP5C
Start date 2023-3-1
Status Implementation
Total budget £854,891.22

Advanced filters

To search for Programmes in a specific time period, please enter the start and end dates.

Start date
For example, 01 01 2007
End Date
For example, 12 11 2007
Cancel