Bridging the Efficiency Gap of Metal vs Carbon back Electrode Perovskite Solar Cells to Support the Clean Energy Growth Transition in South Africa
Project disclaimer
Description
Affordable energy for all Africans is the immediate and absolute priority in the Sustainable Africa Scenario (SAS) 2030. According to the International Energy Agency (IEA) Africa Energy Outlook 2022 report, solar energy-based mini-grids and stand-alone systems are the most viable solutions to electrify rural areas, where over 80% of the electricity-deprived people live [1]. Though Africa has 60% of the best solar resources globally, it has only 1% of installed solar photovoltaic (PV) capacity. Thus more investment and effective solar PV capacity building is required in the region to make electricity from clean energy sources as the backbone of Africa’s new energy systems. The existing silicon PV technology alone cannot meet this demand as it is an expensive mature technology, with global materials security issues, and enormous quantities of PV waste with poor recycling options [2]. Emerging PV technologies such as halide perovskite solar cells combine the unique properties of high power conversion efficiency (>25 %), low-cost printability, and provision to adopt a circular economy to ensure a sustainable clean energy transition for the region [3,4]. Halide perovskite PV offers the lowest cost of solar PV to date (<32 $ per MW h) and it matches with the levelised cost of electricity by solar PV (18-49 $ per MWh) required in Africa in the Sustainable Africa Scenario, 2020-2030. However, the mainstream highly efficient halide perovskite solar cells (PSCs) use thermally evaporated metals such as gold (Au), silver (Ag), copper (Cu) etc as the back electrode. These metals account for 98 % of the cost, 65 % of the carbon footprint and 45 % of the energetic cost of perovskite solar cells [5]. Replacing these metal electrodes with carbon electrodes enhances the stability, scalability and commercialisation aspect of PSCs along with further reduction in cost and carbon footprint. However, carbon back electrode-based PSCs (c-PSCs) have consistently lower power conversion efficiency (PCE) compared to metal electrode-based PSCs (m-PSCs) (20 % vs 26 % efficiency comparison for 0.1 cm2 area devices) limiting their commercialisation. The proposed project aims to bridge the gap in power conversion efficiency between the carbon-back vs metal electrode-based PSCs and demonstrate low-cost and highly efficient (>15 %) printable carbon electrode-based mini modules (10 x 10 cm2). This aim will be realised by combining the strengths of know-how in the fabrication and device physics of efficient halide perovskite solar cells of UK-based physicists with the defect analysis strengths of African physicists. To bridge this efficiency gap, the challenges to overcome are (i) reducing the interfacial losses and (ii) efficient photon management inside the perovskite active layer and the research objectives are identified accordingly. The proposed aims and objectives will formulate the foundations for achieving the vision for the proposed project: to provide accelerated growth in the scale-up of cheaper and cleaner energy sources in South Africa to achieve Sustainable Africa Scenario 2030 through capacity building in cost-effective and efficient PSCs in the partnering institution (University of Pretoria) in South Africa. References: IEA Africa Energy Outlook 2022 Charles et al Energy Environ. Sci., 2023, 16, 3711 Carneiro et al Energy Reports 2022, 8, 475 Faini et al MRS BULLETIN 2024, 49 Zouhair Sol. RRL 2024, 8, 2300929
Objectives
ISPF aims to foster prosperity by solving shared global research and innovation challenges. This will be done through working closely with international partners to: support research excellence and build the knowledge and technology of tomorrow strengthen ties with international partners that share our values; enable researchers and innovators to cultivate connections, follow their curiosity and pioneer transformations internationally, for the good of the planet. Activities under ISPF ODA aim to deliver research and innovation partnerships with low- and middle-income countries.
Location
The country, countries or regions that benefit from this Programme.
Status Implementation
The current stage of the Programme, consistent with the International Aid Transparency Initiative's (IATI) classifications.
Programme Spend
Programme budget and spend to date, as per the amounts loaded in financial system(s), and for which procurement has been finalised.
Participating Organisation(s)
Help with participating organisations
Accountable:Organisation responsible for oversight of the activity
Extending: Organisation that manages the budget on behalf of the funding organisation.
Funding: Organisation which provides funds.
Implementing: Organisations implementing the activity.
- Accountable
- Extending
- Funding
- Implementing
Sectors
Sector groups as a percentage of total Programme budget according to the OECD Development Assistance Committee (DAC) classifications.
Budget
A comparison across financial years of forecast budget and spend to date on the Programme.
Download IATI Data for GB-GOV-26-ISPF-STFC-DQ5ZR34-KMC3QB9-D72KWXT