- Home
- Aid by Sector
- Industry
- Energy generation, renewable sources
- Solar energy
Aid by Sector
Bridging the Efficiency Gap of Metal vs Carbon back Electrode Perovskite Solar Cells to Support the Clean Energy Growth Transition in South Africa
DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY
Affordable energy for all Africans is the immediate and absolute priority in the Sustainable Africa Scenario (SAS) 2030. According to the International Energy Agency (IEA) Africa Energy Outlook 2022 report, solar energy-based mini-grids and stand-alone systems are the most viable solutions to electrify rural areas, where over 80% of the electricity-deprived people live [1]. Though Africa has 60% of the best solar resources globally, it has only 1% of installed solar photovoltaic (PV) capacity. Thus more investment and effective solar PV capacity building is required in the region to make electricity from clean energy sources as the backbone of Africa’s new energy systems. The existing silicon PV technology alone cannot meet this demand as it is an expensive mature technology, with global materials security issues, and enormous quantities of PV waste with poor recycling options [2]. Emerging PV technologies such as halide perovskite solar cells combine the unique properties of high power conversion efficiency (>25 %), low-cost printability, and provision to adopt a circular economy to ensure a sustainable clean energy transition for the region [3,4]. Halide perovskite PV offers the lowest cost of solar PV to date (<32 $ per MW h) and it matches with the levelised cost of electricity by solar PV (18-49 $ per MWh) required in Africa in the Sustainable Africa Scenario, 2020-2030. However, the mainstream highly efficient halide perovskite solar cells (PSCs) use thermally evaporated metals such as gold (Au), silver (Ag), copper (Cu) etc as the back electrode. These metals account for 98 % of the cost, 65 % of the carbon footprint and 45 % of the energetic cost of perovskite solar cells [5]. Replacing these metal electrodes with carbon electrodes enhances the stability, scalability and commercialisation aspect of PSCs along with further reduction in cost and carbon footprint. However, carbon back electrode-based PSCs (c-PSCs) have consistently lower power conversion efficiency (PCE) compared to metal electrode-based PSCs (m-PSCs) (20 % vs 26 % efficiency comparison for 0.1 cm2 area devices) limiting their commercialisation. The proposed project aims to bridge the gap in power conversion efficiency between the carbon-back vs metal electrode-based PSCs and demonstrate low-cost and highly efficient (>15 %) printable carbon electrode-based mini modules (10 x 10 cm2). This aim will be realised by combining the strengths of know-how in the fabrication and device physics of efficient halide perovskite solar cells of UK-based physicists with the defect analysis strengths of African physicists. To bridge this efficiency gap, the challenges to overcome are (i) reducing the interfacial losses and (ii) efficient photon management inside the perovskite active layer and the research objectives are identified accordingly. The proposed aims and objectives will formulate the foundations for achieving the vision for the proposed project: to provide accelerated growth in the scale-up of cheaper and cleaner energy sources in South Africa to achieve Sustainable Africa Scenario 2030 through capacity building in cost-effective and efficient PSCs in the partnering institution (University of Pretoria) in South Africa. References: IEA Africa Energy Outlook 2022 Charles et al Energy Environ. Sci., 2023, 16, 3711 Carneiro et al Energy Reports 2022, 8, 475 Faini et al MRS BULLETIN 2024, 49 Zouhair Sol. RRL 2024, 8, 2300929
REACH-PSM: Resilient Renewable Energy Access Through Community-Driven Holistic Development in Perovskite Solar Module Manufacturing
DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY
Context Energy inequality continues to hamper socio-economic growth in many African nations, where millions lack reliable access to electricity. Traditional energy sources are expensive, environmentally damaging, and dependent on external supplies, which limits their sustainability and accessibility. The REACH-PSM project (Resilient Renewable Energy Access Through Community-Driven Holistic Development in Perovskite Solar Module Manufacturing) aims to revolutionise energy access by enabling the local development and manufacturing of sustainable perovskite solar modules (PSMs) in Nigeria, Rwanda, Kenya, and South Africa. The Challenge With >500 million people in Africa without electricity, there is an urgent need for scalable, affordable, and environmentally sustainable energy solutions. Current renewable technologies, while beneficial, often fail to address local contexts and can result in significant environmental waste, particularly from end-of-life photovoltaic systems. The challenge lies in developing a localised manufacturing process for next-generation solar technology that is both cost-effective and sustainable, with simultaneous development of efficient end-of-life treatment to mitigate waste, allowing for widespread adoption across Africa. Aims and Objectives The REACH-PSM project seeks to accelerate the development and commercialisation of PSMs by focusing on the following objectives: Delivering commercially competitive low-cost manufacturing of PSMs in partner locations in Africa with a performance of >15% PCE and a lifetime of >10 years. Developing novel components of PSMs, and identification of domestic green supply-chains to enable regional manufacture and improve sustainability. Delivering PSMs designed for the circular economy with optimised end-of-life processing, minimising waste and maximising the circular flow of materials delivering enhanced commercial viability, sustainability, and resource security. Creating novel sustainable business models and community co-designed products that are suitable and appropriate for use. Potential Benefits The REACH-PSM project will accelerate the transforming energy access agenda in Africa by pioneering the development of locally manufacturable PSM, demonstrating the first next generation solar module manufacturing in Africa. This localised production will not only empower communities by fostering energy independence and creating jobs but also set a new standard for sustainable energy solutions. By utilising sustainable materials and processes, the project will also address the environmental challenges associated with traditional solar technologies, offering a more resilient and adaptable energy solution. Ayrton Challenge Areas The project addresses the Next Generation Solar Challenge Area. REACH-PSM advances perovskite technology, which offers the potential of more distributed solar manufacturing thanks to low-cost processing and manufacturing routes. REACH-PSM will collaborate across the Ayrton Fund portfolio to amplify impact. We will align with the Ayrton Challenge on Energy Storage, the LEIA programme, the Climate Compatible Growth Project, and the Zero Emission Generators initiative, exploring synergies in local manufacturing, circular economy principles, and sustainable energy solutions. ODA Compliance REACH-PSM is fully compliant with ODA criteria, as it directly addresses the economic and social challenges of Nigeria, Rwanda, Kenya, and South Africa—countries listed on the OECD DAC. By focusing on localised manufacturing and sustainable energy solutions, the project promotes economic development and improves the welfare of communities most in need. The expected outcomes include significant advancements in energy access, environmental sustainability, and economic empowerment, aligning with the broader goals of the UN Sustainable Development Goals (SDGs), particularly SDG7 (Affordable and Clean Energy) and SDG13 (Climate Action). We also seek to advance progress towards SDG5 (Gender Equality), SDG9 (Industry, Innovation, and Infrastructure), SDG10 (Reduced Inequality), SDG11 (Sustainable Cities and Communities) and SDG12 (Responsible Consumption and Production).
Climate Smart Development for Nepal
UK - Foreign, Commonwealth Development Office (FCDO)
This will help Nepal to cope with impacts of climate change (CC) and promote clean development. It will provide strategic support to the Govt of Nepal to design and implement CC policies, to integrate resilience throughout government planning. This will:Improve resilience of 700,000 poor & vulnerable people (especially women) to floods, landslides, droughts in most remote districts;Improve resilience of businesses in 5 growing urban centres & 3 river basins through investments in urban planning, large scale irrigation systems & flood management;Facilitate connection of over 25,000 households to new micro-hydro power installations; connect over 70,000 homes to solar power & install RET in more than 200 schools/health clinics;Develop industry standard for ‘clean’ brick production and enable over half of the brick kilns (at least 400) to adopt more efficient technologies;Improve design of future CC programming & beyond through generation of world class evidence
Supporting Economic Empowerment and Development in the Occupied Palestinian Territories (SEED OPTs)
UK - Foreign, Commonwealth Development Office (FCDO)
This programme will focus DFID economic development assistance to the Occupied Palestinian Territories (OPTs) in the areas of water, electricity, access & movement and trade, and fiscal losses and customs. Programme activities will support institutional capacity building and infrastructure development, working closely with the Palestinian Authority and Government of Israel. The overarching goal is to support economic growth and job creation in the OPTs.
TEA - Transforming Energy Access
UK - Foreign, Commonwealth Development Office (FCDO)
TEA is the flagship FCDO research and innovation platform supporting early-stage testing and scale-up of innovative technologies and business models that accelerate access to affordable, clean, and modern energy in developing countries in Sub-Saharan Africa, South Asia, and the Indo-Pacific, enabling sustainable and inclusive growth. TEA seeks to improve clean energy access for 25 million people, create 170,000 green jobs, and leverage £1.3 billion of additional investment into clean energy technology research, innovation and scale-up. It contributes to International Climate Finance (ICF) objectives and it is the main FCDO platform for delivery of the £1 billion UK Ayrton Fund for clean energy innovation between 2021 and 2026. TEA is delivered by four lead FCDO partners - Carbon Trust, Innovate UK, Shell Foundation, and ESMAP – and a network to date of more than 750 downstream partners delivering research and innovation activities in more than 60 countries.
REPP - Renewable Energy Performance Platform
UK - Foreign, Commonwealth Development Office (FCDO)
The Renewable Energy Performance Platform (REPP) is a private finance investment vehicle which mobilises private sector development activity and investment into small- to medium-scale renewable energy projects across sub-Saharan Africa. This is through providing technical assistance, development capital and ‘viability gap’ financing, giving communities access to clean energy supplies and avoiding greenhouse gas emissions. REPP was initially set up by the Department for Business, Energy & Industrial Strategy (BEIS) in 2015 but was transferred to the FCDO in 2022. REPP consequently has a separate DevTracker account under BEIS which can be found here - https://devtracker.fcdo.gov.uk/programme/GB-GOV-13-ICF-0013-REPP/summary.
Increasing renewable energy and energy efficiency in the Eastern Caribbean
UK - Foreign, Commonwealth Development Office (FCDO)
To increase the use of renewable energy and energy efficiency measures and to improve energy security in the Eastern Caribbean
Nepal Local Infrastructure Support Programme (LISP)
UK - Foreign, Commonwealth Development Office (FCDO)
The Local Infrastructure Support Programme will improve Nepal’s new local and provincial governments’ delivery of the local infrastructure services demanded by rural citizens to create jobs and drive economic development. LISP will do this by providing technical assistance and performance-based capital funding to improve the delivery and resilience of local infrastructure. It will focus on increasing the legitimacy and accountability of local government to their citizens. LISP will directly support the use of the systems and capacity developed by the sister Provincial and Local Government Support Programme.
Pacific Clean Energy Programme
UK - Foreign, Commonwealth Development Office (FCDO)
The Pacific Clean Energy Programme (PCEP) will support increased investment in renewable energy, and aims to improve access to electricity, increase the proportion of electricity from renewable sources, and reduce greenhouse gas emission.
Advanced filters
To search for Programmes in a specific time period, please enter the start and end dates.