1. Home
  2. Islanded Wave Powered Microgrid Pilot for Remote Islands in Thailand
DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY

Islanded Wave Powered Microgrid Pilot for Remote Islands in Thailand

IATI Identifier: GB-GOV-26-ISPF-IUK-2BC54TT-QEVK3CS-989EYWP
Project disclaimer
Disclaimer: The data for this page has been produced from IATI data published by DEPARTMENT FOR SCIENCE, INNOVATION AND TECHNOLOGY. Please contact them (Show Email Address) if you have any questions about their data.

Description

This project is a building on and adding to our successful Energy Catalyst R8 early-stage project, demonstrating good feasibility of the proposed concepts in enhancing the efficiency of onshore wave energy converters (WECs) and developing advanced wave-powered microgrids (WPMG) in the selected remote islands of Thailand with limited or no grid access which currently use expensive, polluting diesel generators (DEGs) as the main supply. The unit cost of the electricity generated by WPMGs can be significantly reduced by advanced predictive optimal control strategies to improve the wave power output of the WECs in a range of sea states with state-of-the-art power electronic components and novel microgrid energy management systems (EMS). The EMS can significantly reduce the power conversion/distribution losses and use deep-learning-based algorithms to forecast the stochastic loads in varying weather and wave conditions. Moreover, the microgrid provides a reliable and secure source of electricity using distributed and remote EMS services. In this mid-stage project, we aim to systematically demonstrate the efficacies of the whole concept to pave the way for sea-trial testing validation at the final stage. The consortia will integrate all the key components into one hybrid system-level wave-to-wire (W2W) WPMG simulator to validate the functionalities of the microgrid efficiently and economically in various scenarios close to real sea conditions. The wave prediction will be enabled by the latest Radar-based technology to provide shutdown signals for detrimental waves and to increase the survivability of the WECs. We aim to increase the technology readiness level (TRL) of the proposed WPMG technologies to build up a stand-alone microgrid in the final stage. Overall, the project aims to provide inclusive community-based renewable energy (sensitive to gender equality and social inclusiveness) that addresses the lack of energy access in Thailand's remote and isolated islands and eventually in other SE Asia countries like the Philippines and Indonesia. The project consortia include key industrial players, including Aquatera, Hitachi Energy, Toshiba, EcoWavePower, and major universities QMUL, Manchester & Exeter, for successfully delivering the project objectives. Following our successful workshops in the early-stage project, we will hold further technical and training workshops for the technology transfer in the SE Asia region, especially for female professionals, to promote gender equality in the renewable energy sector.

Objectives

This project is a building on and adding to our successful Energy Catalyst R8 early-stage project, demonstrating good feasibility of the proposed concepts in enhancing the efficiency of onshore wave energy converters (WECs) and developing advanced wave-powered microgrids (WPMG) in the selected remote islands of Thailand with limited or no grid access which currently use expensive, polluting diesel generators (DEGs) as the main supply. The unit cost of the electricity generated by WPMGs can be significantly reduced by advanced predictive optimal control strategies to improve the wave power output of the WECs in a range of sea states with state-of-the-art power electronic components and novel microgrid energy management systems (EMS). The EMS can significantly reduce the power conversion/distribution losses and use deep-learning-based algorithms to forecast the stochastic loads in varying weather and wave conditions. Moreover, the microgrid provides a reliable and secure source of electricity using distributed and remote EMS services. In this mid-stage project, we aim to systematically demonstrate the efficacies of the whole concept to pave the way for sea-trial testing validation at the final stage. The consortia will integrate all the key components into one hybrid system-level wave-to-wire (W2W) WPMG simulator to validate the functionalities of the microgrid efficiently and economically in various scenarios close to real sea conditions. The wave prediction will be enabled by the latest Radar-based technology to provide shutdown signals for detrimental waves and to increase the survivability of the WECs. We aim to increase the technology readiness level (TRL) of the proposed WPMG technologies to build up a stand-alone microgrid in the final stage. Overall, the project aims to provide inclusive community-based renewable energy (sensitive to gender equality and social inclusiveness) that addresses the lack of energy access in Thailand's remote and isolated islands and eventually in other SE Asia countries like the Philippines and Indonesia. The project consortia include key industrial players, including Aquatera, Hitachi Energy, Toshiba, EcoWavePower, and major universities QMUL, Manchester & Exeter, for successfully delivering the project objectives. Following our successful workshops in the early-stage project, we will hold further technical and training workshops for the technology transfer in the SE Asia region, especially for female professionals, to promote gender equality in the renewable energy sector.


Location

The country, countries or regions that benefit from this Programme.
Thailand
Disclaimer: Country borders do not necessarily reflect the UK Government's official position.

Status Implementation

The current stage of the Programme, consistent with the International Aid Transparency Initiative's (IATI) classifications.

Programme Spend

Programme budget and spend to date, as per the amounts loaded in financial system(s), and for which procurement has been finalised.

Participating Organisation(s)

Help with participating organisations

Accountable:Organisation responsible for oversight of the activity

Extending: Organisation that manages the budget on behalf of the funding organisation.

Funding: Organisation which provides funds.

Implementing: Organisations implementing the activity.

Sectors

Sector groups as a percentage of total Programme budget according to the OECD Development Assistance Committee (DAC) classifications.

Budget

A comparison across financial years of forecast budget and spend to date on the Programme.

Download IATI Data for GB-GOV-26-ISPF-IUK-2BC54TT-QEVK3CS-989EYWP