Go to main content

FCDO ODA allocations for 2021/22 were announced on 21 April 2021. Changes to individual programmes are underway. The information on this website may not reflect the latest allocated budgets for this year. This information will be updated in due course.

  1. Home
  2. Global
  3. Newton Fund: Applying nature-based coastal defence to the world's largest urban area - from science to practice

UK - Department for Business, Energy and Industrial Strategy

Newton Fund: Applying nature-based coastal defence to the world's largest urban area - from science to practice

Disclaimer: The data for this page has been produced from IATI data published by UK - Department for Business, Energy and Industrial Strategy. Please contact them (Show Email Address) if you have any questions about their data.

Project Data Last Updated: 27/08/2020

IATI Identifier: GB-GOV-13-FUND--Newton-EP_R024553_1

Description

Project Summary: Nature-based coastal defence solutions have increasingly been recognized as more sustainable alternatives to conventional engineering approaches against climate change. In deltas undergoing fast urbanization, applying nature-based solutions can lead to space competition with other land uses, e.g. land-reclamations. For optimized management, the question of how much space is required by nature-based solutions is important. However, our current knowledge is insufficient in ecosystem size-dependent defence-value and resilience. Additionally, we are lacking insights into ecosystem creation for coastal defence, as previous restoration efforts have suffered low success rates. The current proposal aims to develop process-based understanding and predictive models of ecosystem size requirements and how to create ecosystems for coastal defence, using the world's largest urban area, Pearl River Delta, China, as a model system. Delta-scale mangrove area monitoring and hydrodynamic modelling will be conducted to study wetland area changes and optimization of ecosystem spaces for defence, under contrasting scenarios of climate change and land-reclamations. This large-scaled study will also provide underpinning boundary conditions for local-scaled experiments and modelling. A set of experiments using novel instruments will be conducted to improve our insights on the processes influencing mangrove defence-value and lateral dynamics. Innovative measures of using dredging materials and oyster reefs to facilitate mangrove establishment will also be tested experimentally. Local-scaled models will incorporate the obtained experimental knowledge to predict mangrove biogeomorphic dynamics and provide guidelines for management. The developed models and knowledge will be directly applied in the design of a pilot eco-dike project in collaboration with our partners. Summary of the UK applicants' proposed contribution to the project: The focus of the study is on coastal zone management, including management of sediment and nature-based flood defence. The UK applicants will lead Work Task 1: Wetland area monitoring/hydrodynamic modelling. This work task will provide an over-view of the bio-physical conditions, including the morphological and land-use aspects of the Pearl River Delta and its regional setting. The UK team will implement a high resolution unstructured-grid model (FVCOM) for the Pearl River Delta (PRD) for hydrodynamics, waves and sediment transport which will provide the interface between the larger scale atmospheric and oceanic boundary conditions and the smaller-scale process studies and ecosystem modelling to be carried out by our Dutch and Chinese partners. We will also address some objectives within focus area 1 (Resilient urban planning and management) in terms of combining spatial planning and disaster management by optimizing land use, institutions and mechanisms for more sustainable urbanisation, exploring eco-dynamic design options to provide opportunities for nature as part of urban development processes and reducing urban footprints and developing performance evaluation systems to mitigate environmental impacts. We will explore opportunities to apply management decision tools, such as those recently developed in the EPSRC ARCoES project.

Objectives

Our overall objective is to explore the challenges of sustainable integrated coastal zone management, using nature-based coastal defence in a changing climate under the pressures and demands of intensive urbanisation. The area of study is the Pearl River Delta (PRD) which is exposed to typhoons from the South China Sea, as well a being one of the areas with a high density population most exposed to sea level rise. We aim to develop predictive models using the and applicable knowledge to: 1) determine the minimum sizes of nature-based coastal defence required for long-term safety a. by considering optimization of ecosystem sizes around the delta b. by considering repeated storm impacts c. by considering ecosystem lateral dynamics under contrasting land-reclamations and global change scenarios 2) design management measures to create mangrove foreshores a. when wetland creation is combined with land-reclamations b. by making use of dredging material c. by making use of oyster reefs The obtained knowledge will be directly applied in Pearl River Delta in: 1) planning delta-scale nature-based coastal defence system; 2) designing the pilot eco-dikes in close collaboration with our non-academic partners.

Status - Implementation More information about project status
Project Spend More information about project funding
Participating Organisation(s) More information about implementing organisation(s)
Sectors

Sectors groups as a percentage of country budgets according to the Development Assistance Committee's classifications.

Budget

A comparison across six financial years of forecast spend and the total amount of money spent on the project to date.

This site uses cookies

We use Google Analytics to measure how you use the website so we can improve it based on user needs. Google Analytics sets cookies that store anonymised information about how you got to the site, the internal pages you visit, how long you spend on each page and what you click on while you're visiting the site. Read more