1. Home
  2. FENGBO-WIND - Farming the ENvironment into the Grid: Big data in Offshore Wind
DEPARTMENT FOR BUSINESS, ENERGY & INDUSTRIAL STRATEGY

FENGBO-WIND - Farming the ENvironment into the Grid: Big data in Offshore Wind

IATI Identifier: GB-GOV-13-FUND--Newton-EP_R007470_1
Project disclaimer
Disclaimer: The data for this page has been produced from IATI data published by DEPARTMENT FOR BUSINESS, ENERGY & INDUSTRIAL STRATEGY. Please contact them (Show Email Address) if you have any questions about their data.

Description

The proposed project will develop an integrated computational simulation approach capable of handling the complex interactions between the local atmosphere, the coastal ocean and sedimentary environment, farm aerodynamics, turbine response and grid integration in offshore wind farms. This will target a substantial reduction in the cost of energy in offshore wind by exploiting: high-fidelity optimization of array design and operation, tailored to a specific site and able to deal with realistic marine atmospheric boundary layer conditions, in particular the very slow dissipation of rotor wakes; combined with big-data analysis of very-large-scale simulations of the whole system under extreme conditions, to minimize integrity risks without overly conservative safety factors. Both situations will be investigated within the context of the development of offshore farms off the Chinese coast, which brings particular challenges regarding coastal characteristics (e.g. high sediment concentrations) and extreme events (in particular typhoons). To achieve this we propose a multiscale approach to wind farm design and network integration that considers, first, a more accurate characterisation of extreme events (and active mitigation strategies) in the analysis through highly-resolved computer simulation; second, new optimization techniques for the design and operation of wind farms that allow for sustained power extraction using relevant knowledge of both the marine atmosphere and individual turbine (aeroservoelastic) dynamics; and third, robust grid design and operation strategies that accommodate wind resource variability and maximise the sustainability of energy generation. FENGBO-WIND will carry out the most ambitious computer simulations to date on farm dynamics and farm/environment interaction, to build physics-based predictive capabilities on farm output and investigate long-term interactions between farms and their local environment. An interdisciplinary consortium of experts, including Earth/environmental scientists, civil and electrical engineers, and fluid dynamicists, have been assembled to tackle this challenging computational problem. The team will have access to (1) the world's largest supercomputer (Sunway TaihuLight) to carry out full system simulations of energy output and farm state for specific environmental scenarios, (2) operational data from existing wind farms off the Chinese coast as well as conditions at a target site through a partnership with a local grid company, and (3) performance data for a state-of-the-art wind turbine design from the leading Chinese manufacturer. The results will be benchmarked against state-of-the-art industrial design tools and protocols for grid integration for offshore wind farms.

Objectives

The Newton Fund builds research and innovation partnerships with developing countries across the world to promote the economic development and social welfare of the partner countries.


Location

The country, countries or regions that benefit from this Programme.
China
Disclaimer: Country borders do not necessarily reflect the UK Government's official position.

Status Implementation

The current stage of the Programme, consistent with the International Aid Transparency Initiative's (IATI) classifications.

Programme Spend

Programme budget and spend to date, as per the amounts loaded in financial system(s), and for which procurement has been finalised.

Participating Organisation(s)

Help with participating organisations

Accountable:Organisation responsible for oversight of the activity

Extending: Organisation that manages the budget on behalf of the funding organisation.

Funding: Organisation which provides funds.

Implementing: Organisations implementing the activity.

Sectors

Sector groups as a percentage of total Programme budget according to the OECD Development Assistance Committee (DAC) classifications.

Budget

A comparison across financial years of forecast budget and spend to date on the Programme.

Download IATI Data for GB-GOV-13-FUND--Newton-EP_R007470_1