1. Home
  2. Traits and technologies to boost North African protein self-sufficiency (BEANS4N.AFRICA)
DEPARTMENT FOR BUSINESS, ENERGY & INDUSTRIAL STRATEGY

Traits and technologies to boost North African protein self-sufficiency (BEANS4N.AFRICA)

IATI Identifier: GB-GOV-13-FUND--GCRF-BB_P023509_1
Project disclaimer
Disclaimer: The data for this page has been produced from IATI data published by DEPARTMENT FOR BUSINESS, ENERGY & INDUSTRIAL STRATEGY. Please contact them (Show Email Address) if you have any questions about their data.

Description

Faba bean is a grain legume whose nutritional value, particularly its high protein content, has earned it the nickname "poor man's meat" and for hundreds of millions of inhabitants of North Africa, the Nile Valley and the Middle East, it is the dominant source of staple dietary protein. Furthermore, in times when sustainable agricultural productivity is more important than ever, faba bean stands out as THE grain legume that combines very high yield potential, low environmental impact due its ability to fix its own nitrogen fertilizer in its root nodules, high nutritional value and widespread cultural acceptance. Unfortunately, production of faba bean in North Africa has undergone a long-term decrease, simply because it is grown on far less land than just a few decades ago. The major reason for this alarming abandonment of areas previously planted to faba bean is not the result of a fall in demand but due to the spread of a parasitic weed known as broomrape (Orobanche). Broomrape is unable to photosynthesize and must attach itself to a host root system in order to develop and reproduce. The inability to eradicate it from infested soil arises from the fact that it produces up to two hundred thousand tiny seed per flowering head that can lie dormant for decades in the soil until triggered to germinate and attach when the chemical signature of a nearby host root is detected. Fortunately, there are researchable solutions to equip the faba bean to live and thrive in the presence of Orobanche seed, but to succeed in the battle on the ground, there is a need to take action on several fronts. This project recognises faba bean as a key crop underpinning the most basic level of food security in North Africa and puts forward an integrated, multi-disciplinary programme of research that addresses the faba bean self-sufficiency issue at three different levels. Firstly, we propose immediate investment in high throughput genetic profiling technology, which we will put to use in creating a map of the six chromosomes of the faba bean genome that is orders of magnitude more detailed than any currently available. This technological step change will mean many previously untackled problems such as finding genes that confer resistance or tolerance to a range of pests, diseases and stresses will become feasible. However, on its own, this technology would have limited relevance to the nutritional and economic welfare of the developing world. Therefore, our second level of activity is to deploy this new mapping technology in partnership with some of North Africa's best breeders and geneticists to locate genes that confer two distinct mechanisms for thriving in the presence of broomrape: one mechanism involves removing the chemical signals that trigger parasite germination, the second mechanism involves improved ability to compete with the parasite after it has attached to the root. We will complement this gene hunt (which will improve future prospects for accelerated breeding of highly broomrape-tolerant faba bean protected by both mechanisms) with capacity-building work using two traits which can be efficiently selected for already - one a novel faba bean herbicide resistance that will permit treatment of the crop with herbicides that kill the broomrape and not the crop, and the second, removal of an anti-nutritional factor called vicine that causes a serious hemolytic disorder called favism in predisposed individuals constituting 5-10% of the population. Thirdly, because no breeding achievements actually make a difference without widespread uptake of new varieties, we integrate here a thorough socio-economic study that will produce recommendations to the project participants on what and how to deliver their breeding and agronomy innovations to maximise uptake and more generally to governments and the foreign aid community to highlight bottlenecks and potential solutions in the rollout of new varieties and agronomy advice

Objectives

The Global Challenges Research Fund (GCRF) supports cutting-edge research to address challenges faced by developing countries. The fund addresses the UN sustainable development goals. It aims to maximise the impact of research and innovation to improve lives and opportunity in the developing world. The fund addresses the UN sustainable development goals. It aims to maximise the impact of research and innovation to improve lives and opportunity in the developing world.


Location

The country, countries or regions that benefit from this Programme.
Egypt, Republic of Tunisia
Disclaimer: Country borders do not necessarily reflect the UK Government's official position.

Status Post-completion

The current stage of the Programme, consistent with the International Aid Transparency Initiative's (IATI) classifications.

Programme Spend

Programme budget and spend to date, as per the amounts loaded in financial system(s), and for which procurement has been finalised.

Participating Organisation(s)

Help with participating organisations

Accountable:Organisation responsible for oversight of the activity

Extending: Organisation that manages the budget on behalf of the funding organisation.

Funding: Organisation which provides funds.

Implementing: Organisations implementing the activity.

Sectors

Sector groups as a percentage of total Programme budget according to the OECD Development Assistance Committee (DAC) classifications.

Budget

A comparison across financial years of forecast budget and spend to date on the Programme.

Download IATI Data for GB-GOV-13-FUND--GCRF-BB_P023509_1